Semantic-Geographic Trajectory Pattern Mining Based on a New Similarity Measurement

نویسندگان

  • You Wan
  • Chenghu Zhou
  • Tao Pei
چکیده

Trajectory pattern mining is becoming increasingly popular because of the development of ubiquitous computing technology. Trajectory data contain abundant semantic and geographic information that reflects people’s movement patterns, i.e., who is performing a certain type of activity when and where. However, the variety and complexity of people’s movement activity and the large size of trajectory datasets make it difficult to mine valuable trajectory patterns. Moreover, most existing trajectory similarity measurements only consider a portion of the information contained in trajectory data. The patterns obtained cannot be interpreted well in terms of both semantic meaning and geographic distributions. As a result, these patterns cannot be used accurately for recommendation systems or other applications. This paper introduces a novel concept of the semantic-geographic pattern that considers both semantic and geographic meaning simultaneously. A flexible density-based clustering algorithm with a new trajectory similarity measurement called semantic intensity is used to mine these semantic-geographic patterns. Comparative experiments on check-in data from the Sina Weibo service demonstrate that semantic intensity can effectively measure both semantic and geographic similarities among trajectories. The resulting patterns are more accurate and easy to interpret.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Mining Semantic Sequential Patterns from Geo-tagged Photos

Social media data associated with geographic location and time information reflect people footprint in real world. Abundance of geo-referenced content represents a massive opportunity to understanding of human geographic mobility behaviors. Most trajectory mining research from geo-enabled social media data focus on spatial geometric features. Integrating trajectory analysis with semantic inform...

متن کامل

Dynamic Modeling of Trajectory Patterns using Data Mining and Reverse Engineering

The constant increase of moving object data imposes the need for modeling, processing, and mining trajectories, in order to find and understand the patterns behind these data. Existing works have mainly focused on the geometric properties of trajectories, while the semantics and the background geographic information has rarely been addressed. We claim that meaningful patterns can only be extrac...

متن کامل

Efficient Mining of Regional Movement Patterns in Semantic Trajectories

Semantic trajectory pattern mining is becoming more and more important with the rapidly growing volumes of semantically rich trajectory data. Extracting sequential patterns in semantic trajectories plays a key role in understanding semantic behaviour of human movement, which can widely be used in many applications such as location-based advertising, road capacity optimisation, and urban plannin...

متن کامل

Semantic and spatial similarity in geographic information retrieval

People use the similarity to store and retrieve information, also for learning and concept formation. Similarity plays a fundamental role in many applications such as decision-making systems, data mining and pattern recognition. The same applies to the spatial similarity in the processes of recovery and integration of spatial information. In this paper a methodology based on the semantic proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017